MP3

Get Free Music at www.divine-music.info
Get Free Music at www.divine-music.info

Free Music at divine-music.info
Renungan…? Sebuah Kapal Layar akan terus berjalan untuk mencapai satu tujuan , meskipun diubah-ubah oleh arah angin yang berbeda beda :) Mungkinkah…?

This is default featured post 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 6 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 7 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 8 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 6 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 7 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 8 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 9 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 10 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 10 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 10 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 10 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 19 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured post 10 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

The Ignition System ( Sistim Pengapian )

The Ignition System

Sistem pengapian adalah salah satu hal yang kudu lebih diperhatikan dalam hal engine tuning. Kebanyakan orang mengira ketika mereka selesai memodifikasi, yang diperlukan hanyalah memajukan atau memundurkan timing pengapian. Tidak cukup itu saja. Satu, percikan api harus menyala cukup kuat untuk membakar udara/bahan-bakar. Mungkin kebanyakan bilang, ya udah pasti lah!! Tapi apakah kalian tahu bahwa molekul udara bersifat insulator? Dan ketika kamu memodifikasi mesin, merubah porting, memodifikasi camshaft, memasang karburator besar, semakin banyak udara dilesakkan ke dalam silinder, maka percikan api dari koil standard tidak akan pernah cukup menyalakan campuran udara/bahan-bakar di ruang padat kompresi.
Fakta, lemahnya kualitas nyala busi memberi efek negatif kepada mesin sebagaimana timing pengapian yang kurang tepat. Tambahan, sebuah campuran basah ( 11 udara : 1 bahan bakar ) , lebih bersifat konduktif terhadap pengapian.
Sekali campuran udara/bahan-bakar dinyalakan, kecepatan lidah api merambat pada kubah ruang bakar menjadi penting jika kamu ingin melepaskan tenaga maksimal pada mesin. Jika api merambat terlalu cepat, akan ada beban berat yang menahan piston, setang dan bearing kruk as ; sebaliknya, jika api merambat perlahan, tidak cukup ledakan dihasilkan untuk menghasilkan tenaga besar ke roda.
Tiga hal penting yang mempengaruhi kecepatan rambat api dalam membakar campuran udara/bahan-bakar dan kekuatan ledak di ruang bakar :
  1. KUALITAS CAMPURAN UDARA/ BAHAN-BAKAR
  2. PERGERAKAN / TURBULENSI CAMPURAN UDARA/BAHAN-BAKAR DI DALAM COMBUSTION CHAMBER
  3. DESAIN DARI KUBAH RUANG BAKAR YANG BAIK
PROTECT
PROTECT RACING COIL :: RAT MOTORSPORT ::
CAPACITOR DISCHARGE INGNITION
Disingkat CDI, inilah perangkat pengapian paling digembar-gemborkan. Padahal fungsinya sederhana, menempatkan waktu ledak busi di ruang bakar pada saat yang tepat seiring pergerakan piston. Timing (tempo) pengapian, kurva, derajat, adalah bahasa-bahasa umum untuk membahas CDI.
CDI VORTEX
CDI VORTEX
Capacitor discharge ignition sistem menyimpan energi di dalam kapasitor lebih banyak daripada dalam koil. CDI memang masih membutuhkan koil, namun koil hanya sebatas digunakan untuk transformasi pulsa agar tegangan meningkat dengan cepat. Olehkarenanya CDI modern seperti milik BRT tidak membutuhkan koil racing, cukup koil bawaan pabrikan sudah mampu memberi efek signifikan. Begitu pula penggantian CDI pada motor modern akan lebih terasa, dibanding hanya sekedar mengganti KOIL.
Dalam sistem CDI, circuit tenaga utama adalah sebuah oscilator mini yang mengisi kapasitor hingga 600 volt dan menunggu kontak pick up dan pulser memicu sistem. Ini disebut Magnetic Trigering System. Ketika sinyal dipicu, kapasitor akan menghantarkan energi ke kumparan primer pada koil. Koil bertindak sebagai perubah pulsa dan meninggikan tegangan dari kapasitor hingga menjadi 40.000 volt yang dibutuhkan untuk menciptakan loncatan bunga api sejauh kurang dari 1mm di dalam ruang bakar yang terkompresi.
Keunggulan dan Kekurangan
CDI memiliki banyak keunggulan utamanya dalam menghasilkan tegangan yang cepat membesar. Kenyataanya, kecepatan ini hanya membutuhkan waktu 0,002 detik untuk memenuhi tegangan kapasitor. Secara teoritis, CDI harus dalam kondisi bagus untuk menyajikan bunga api berkualitas terus menerus hingga lebih dari 10.000 kali per menit. Tapi, CDI hanya menyajikan bunga api dalam waktu pendek dan bergantung kekuatan pemicu bunga api.
CDI RACING
CDI RACING
BUSI
Sisi penting dari busi adalah pemilihan rentang panas, menggambarkan kemampuan busi melepas panas dari pusat elektroda. Busi dengan elektroda pendek adalah busi dingin, karena panas hanya memiliki jarak yang pendek untuk melepas panas dari dalam mesin ke udara bebas.
Apa yang membuat Heat Range penting adalah kehandalan dan daya tahan dari busi. Busi yang terlalu panas akan mudah fraktur (retak) karena panas berlebih, dan akan menjadi titik didih di ruang bakar sebagai sumber detonasi (ngelitik). Tapi, panas tetap diperlukan oleh busi untuk mencegah dari menumpuknya arang yang akan membuat umur busi pendek. Busi dingin akan penuh deposit karbon bila dipasang pada mesin standard, dan akan menjadi tidak efektif serta berumur singkat.

MEMILIH BUSI YANG TEPAT
Perlu disadari bahwa, mengemudi dalam kondisi berbeda, dengan temperatur berbeda akan membutuhkan busi yang berbeda pula. Untuk mesin balap, pemakaian extreme, maka busi terbaik yang pernah ada harus menancap di mesin mu.
BUSI TRANSPARAN :: RAT MOTORS ::
Setelah melakukan set up, coba cek kondisi busi dan kode pembacaan busi. Inspeksi jika busi terdapat endapan hitam yang basah, maka busi terlalu dingin. Bagaimanapun, kehitaman dapat juga mengindikasikan set up karburator yang terlalu basah. Dan jika endapan itu berminyak, ada kebocoran oli ke ruang bakar yang patut diwaspadai. Jika pusat elektroda terlalu putih, maka busi terlalu panas. Bisa juga pemajuan pengapian terlalu jauh. Atau ukuran main jet pada karburator kurang pas. Jika busi sudah mengendap keabu-abuan atau kecoklatan maka itulah setingan terbaik yang bisa kita dapatkan.
Tentu saja, busi terlalu panas, harus kita ganti dengan menaikkan 1 angka kode busi, begitu pula sebaliknya. Lapanpun kamu mengganti busi dengan kode panas yang berbeda, lakukan terlebih dahulu pengetesan agar kamu memperoleh angka busi yang tepat.

Mengenal bagian-bagian Mesin

Parts1
Mesin mobil adalah sebuah sistem yang cukup kompleks, semua parts bekerjasama untuk menghasilkan tenaga yang akan dikonversi menjadi daya gerak mobil tersebut. Mari kenali beberapa Parts mesin yang krusial.
Berikut adalah istilah-istilah pada mesin dan bagian-bagian mesin yang dirasa perlu kita ketahui :
  • DOHC
    Double Over Head Camshaft (disebut juga twincam). 2 (dua) camshaft dalam 1 (satu) cylinder head. Pada timor, diaplikasikan pada S515i yang menggunakan teknologi injeksi pada system pembakarannya.
  • SOHC
    Single Over Head Camshaft. 1 camshaft dalam 1 cylinder head, pada timor diaplikasikan pada S515 yang menggunakan teknologi karburator pada system pembakarannya.
  • ECU (DOHC)
    Engine Control Unit, dikenal juga dengan EMS atau Engine Management System, adalah system elektronik yang mengontrol beberapa aspek pada mesin. ECU menentukan jumlah bensin, waktu pengapian dan beberapa parameter lain yang dimonitor oleh sensor yang ada dimesin yang memberikan signal berupa besaran arus atau resistansi.Letaknya kurang lebih di bawah tape mobil (didalam Kabin)
  • TPS (DOHC)
    Throttle Position Sensor, adalah sensor yang digunakan untuk memonitor posisi throttle pada mesin. Sensor ini biasanya berbentuk potensiometer yang berubah-ubah nilai resistansinya sesuai dengan posisi daripada flap. Signal yang dihasilkan kemudian dikirimkan ke ECU sebagai input untuk mengontrol Waktu pengapian dan waktu injeksi.

    Biasanya terletak pada Throttle body bagian butterfly spindle (flap throttle), sehingga dapat secara langsung memonitor posisi bukaan dari flap tersebut.
  • ATS (DOHC)
    Air Temperature Sensor, sensor yang berfungsi untuk menghitung temperatur udara yang masuk. Letaknya pada belalai gajah
  • MAP Sensor (DOHC)
    Manifold Absolute Pressure Sensor, adalah sensor yang menghasilkan informasi tekanan secara instant yang digunakan untuk menghitung kepadatan udara (air density) dan menentukan Air Mass Flow Rate yang kemudian digunakan ECU untuk menghitung jumlah aliran bahan bakar yang sesuai,

    Data-data lain yang diperlukan untuk kendaraan yang menggundakan MAP system adalah Speed Density, Putaran mesin, dan temperatur udara. Letaknya diatas pipa AC (diruang Mesin), berbentuk kotak hitam ukuran sebesar korek api.
  • WTS (DOHC)
    Water Temperature Sensor, sensor yang berfungsi untuk menghitung temperatur air pendingin yang bersirkulasi di dalam mesin. Letaknya di dekat transmisi.
  • ATS (DOHC)
    Air Temperature Sensor, sensor yang berfungsi untuk menghitung temperatur udara yang masuk. Letaknya pada belalai gajah
  • ISC (DOHC)
    Idleup Speed Control, adalah part yang berfungsi untuk menjaga iddle / putaran mesin pada saat beban lain menyala, seperti AC dan Power Steering. Berfungsi juga sebagai automatic choke pada saat mesin dingin, pada timor karburator (SOHC) alat yang kurang lebih berfungsi sama dikenal dengan nama Vaccum Tripple Act.
  • HLA(DOHC/SOHC)
    Hydraulic Lash Adjuster, adalah part yang berfungsi untuk menjaga celah bukaan katup / klep agar tetap 0.00 mm, dengan adanya part ini, timor kita tidak akan pernah stel klep. Letaknya di dalam cylinder Head, jumlahnya 16 untuk DOHC, 8 untuk SOHC

    Parts2
  • Ignition Timing / Waktu pengapian (DOHC/SOHC)
    Adalah waktu pengapian (spark/ignition) yang terjadi pada combustion chamber (pada saat power stroke) relativ terhada posisi piston dan kecepatan angular crankshaft.

    Setting yang tepat akan mempengaruhi ketahanan mesin, keiritan bahan bakar dan performa mesin. Untuk DOHC standar pengapian 8 +/- 2 derajat. Untuk SOHC standar pengapian 4 +/- 2 derajat
  • Timing Belt (DOHC/SOHC)
    Part yang berfungsi untuk mengontrol timing dari katup. Timing belt menghubungkan crankshaft dengan camshaft yang kemudian mengontrol buka dan tutupnya katup. Letaknya di samping kiri cylinder Head, bentuknya belt yang bergigi pada bagian dalamnya, pada penggantian timing belt disarankan untuk sekalian mengganti idler-nya.
  • Radiator (DOHC/SOHC)
    Adalah alat yang didesign sebagai heat exchanger atau untuk mentransfer energi panas dari satu media ke media lain untuk keperluan pendinginan atau pemanasan.

MENGENALI CARA KERJA MESIN 4 TAK

Langkah Hisap
Langkah Hisap
Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).
Empat proses tersebut terbagi dalam siklus :
Langkah hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke dalam silinder.  Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.
Prosesnya adalah ;
  1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
  2. Klep inlet terbuka, bahan bakar masuk ke silinder
  3. Kruk As berputar 180 derajat
  4. Noken As berputar 90 derajat
  5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder
—————————————————————————————————————————————–
LANGKAH KOMPRESI
Langkah Kompresi
Langkah Kompresi
Dimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.
Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.
Prosesnya sebagai berikut :
  1. Piston bergerak kembali dari TMB ke TMA
  2. Klep In menutup, Klep Ex tetap tertutup
  3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
  4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
  5. Kruk as mencapai satu rotasi penuh (360 derajat)
  6. Noken as mencapai 180 derajat
—————————————————————————————————————————————–
LANGKAH TENAGA
Langkah Tenaga
Langkah Tenaga
Dimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.
Prosesnya sebagai berikut :
  1. Ledakan tercipta secara sempurna di ruang bakar
  2. Piston terlempar dari TMA menuju TMB
  3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
  4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
  5. Putaran Kruk As mencapai 540 derajat
  6. Putaran Noken As 270 derajat
—————————————————————————————————————————————–
LANGKAH BUANG
Exhaust stroke
Exhaust stroke
Langkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.
Prosesnya adalah :
  1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
  2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
  3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
  4. Kruk as melakukan 2 rotasi penuh (720 derajat)
  5. Noken as menyelesaikan 1 rotasi penuh (360 derajat)
—————————————————————————————————————————————–
FINISHING PENTING — OVERLAPING
Overlap adalah sebuah kondisi dimana kedua klep intake dan out berada dalam possisi sedikit terbuka pada akhir langkah buang hingga awal langkah hisap.
Berfungsi untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan dari kinerja mekanis klep dan inersia udara di dalam manifold, maka sangat diperlukan untuk mulai membuka klep masuk sebelum piston mencapai TMA di akhir langkah buang untuk mempersiapkan langkah hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran, klep buang tetap terbuka hingga setelah TMA. Derajat overlaping sangat tergantung dari desain mesin dan seberapa cepat mesin ini ingin bekerja.
manfaat dari proses overlaping :
  1. Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran
  2. Pendinginan suhu di ruang bakar
  3. Membantu exhasut scavanging (pelepasan gas buang)
  4. memaksimalkan proses pemasukkan bahan-bakar
Oke dengan mengenal prinsip dan cara kerja mesin 4 tak, semoga dapat menjadi pegangan awal sebelum merencanakan modifikasi. Mana hal yang penting untuk dimanfaatkan agar proses langkah tenaga bekerja optimal. Tetap sehat… Tetap semangat! Biar bisa modifikasi mesin tiap hari

Mau bikin Mio Bore-up 150cc?

Mau bikin Mio Bore-up 150cc?




mio racingBak panas setahun diguyur hujan sehari, sueger tenan. Itu gambaran yang pas buat speedgoes dengan skutik. Bagaimana tidak, event balap resmi yang ditunggu-tunggu sebagai wujud eksistensi dunia balap motor akhirnya terselengara juga.

“Waktu penyelenggaraan pertama pada akhir Desember 2008 lalu, kelas Bore-up 150 cc Pemula termasuk yang banyak diikuti peserta. Yamaha Mio jadi skutik yang paling banyak turun di kelas itu,” ucap Fredy, pihak penyelenggara balapan.

Tetarik ikutan? Yuk kita persiapkan Mio buat bisa fight abis di kelas itu. Tentu dengan mengacu pada aturan yang sudah disepakati bersama. Untuk persiapan pertama konsentrasi pada pembesaran ruang bakar ya.





Menurut beberapa mekanik yang doyan otak-atik skutik, ada 2 cara yang bisa diakukan agar kapasitas mesin 113,7 cc punya Mio bisa sesuai regulasi kelas bore-up 150 cc pemula.

"Pertama dengan murni menaikkan diameter piston Mio yang standarnya 50 mm. Langkah berikutnya dengan memadukan pembesaran diameter piston dengan memperpanjang langkah,” terang Aldhie, mekanik sekaligus pemilik Bike.rider Shop di Kalimalang, Jaktim.




Pakai Piston 57 mm
Untuk cara pertama, ukuran piston yang bisa dipakai melengserkan standar Mio, yang berdiameter 57 mm. Dengan perhitungan (1/4 x 3,14 x(57)² x 57,9): 1000, maka didapat kapasitas mesin Mio sekarang jadi 147,67 cc.

Menjejalkan piston gede, bikin liner standar juga mesti dirumahkan. “Gantinya liner yang sesuai sama piston itu, misal pakai punya Suzuki Thunder 125,” kata pria berkulit putih ini.

Selain bawaan Thunder 125, piston Honda GL Neo Tech & Yamaha V-Ixion bisa dipakai buat naikkan cc Mio. Oh ya, enggak hanya boringnya yang mesti diganti saat mengapliaski cara pertama ini.

Khusus pakai piston Thunder dan V-Ixion, penyesuaian pada diameter pin juga mesti dilakukan. Pasalnya bawaan Mio 15 mm dan pin Thunder juga V-Ixion 14 mm.

Butuh pengerjaan 5 sampai 7 hari




Perbesar Piston + Naik Stroke
Langkah kedua ini, kombinasi nambah diameter piston dengan menjejalkan yang ukuran 54,5. Sedang buat tambah panjang langkah, ukuran total 6 mm (sesuai aturan maksimal naik stroke) dianggap yang paling pas. Pasalnya bila dimasukkan ke dalam rumus, hasil perkalian dan pembagiannya ketemu kapasitas mesin jadi 148,99 cc.

Dibanding hanya dengan menaikkan kapasitas mesin, pengerjaan pada langkah ke-2 ini lebih lama. “Karena mesti ada prosesi belah mesin buat pasang stroker baru,” urai Joko, mekanik dari Pakde Motor di Depok, Jabar.

Aplikasi ini tak perlu pakai ganti boring, namun penyesuaian pin perlu dilakukan pada beberapa piston yang bisa digunakan. Seperti seher bawaan Yamaha Jupiter dan Kawasaki Kaze yang diameternya 13 mm. Kalau pasangnya piston Suzuki Shogun atau Yamaha Jupiter MX, gak perlu ganti pin.

Bongkar pasang Mesin Mobil

komponen fast moving, dan rebuild kembali mesin 


Proses memakan waktu 3-4 hari, yang lama adalah bagian pembersihan

Cara Kerja Mesin Mobil



Prinsip Kerja

Tekanan gas hasil pembakaran bahan bakan dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.

Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel (sedangkan motor bensin dianalisa dengan siklus otto).



Perbedaan antara motor diesel dan motor bensin yang nyata adalah terletak pada proses pembakaran bahan bakar, pada motor bensin pembakaran bahan bakar terjadi karena adanya loncatan api listrik yang dihasilkan oleh dua elektroda busi (spark plug), sedangkan pada motor diesel pembakaran terjadi karena kenaikan temperatur campuran udara dan bahan bakar akibat kompresi torak hingga mencapai temperatur nyala. Karena prinsip penyalaan bahan bakarnya akibat tekanan maka motor diesel juga disebut compression ignition engine sedangkan motor bensin disebut spark ignition engine.

B. Kendaraan yang melaju di jalanan pada umumnya terbagi menjadi dua bagian besar, yaitu yang berbahan bakar BENSIN, dan berbahan bakar SOLAR . Sebenarnya apa sih perbedaan keduanya yang paling mendasar? Lalu bagaimana persisnya cara kerja mesin DIESEL yang berbahan bakar SOLAR tadi?

Perbedaan mendasar dari kedua jenis mesin itu adalah, kalau mesin BENSIN atau disebut juga mesin Otto (motor ledak), di dalam ”ruang mesin” nya terdapat lecutan listrik/api dari BUSI untuk ”menyalakan” campuran bensin dan udara (oksigen). Sementara pada mesin Diesel, tidak diperlukan nyala listrik/api dari busi. Koq bisa sama-sama meledak ya?

Dalam hukum Fisika Thermodinamika (coba tanyakan pada guru kamu di sekolah deh), terdapat salah satu hukum yang menyatakan : ”jika volume di kecilkan (di kompresi / di mampatkan) tekanan udara akan bertambah disertai dengan bertambahnya Temperatur”. Sebagai ilustrasi, barangkali kamu yang pernah menggunakan pompa ban sepeda, saat digunakan batang pompa nya akan menjadi panas, mengapa? Ya karena udara yang di mampatkan pada saat kamu memompa ban membuat tekanan udara menjadi tinggi dan juga suhu nya.


Pada mesin Diesel, dibuat ”ruangan” sedemikian rupa sehigga pada ruang itu akan terjadi peningkata suhu hingga mencapai ”titik nyala” yang sanggup ”membakar” minyak bahan bakar. Pemampatan yang biasanya digunakan hingga mencapai kondisi ”terbakar” itu biasanya 18 hingga 25 kali dari volume ruangan normal. Sementara suhunya bisa naik mencapai 500 oC (bayangkan ! minyak solar saja dapat ”meledak” pada suhu 250 oC saja)

Cara kerjanya mudah, minyak solar yang sudah dicampur udara (seperti yang keluar dari semprotan obat nyamuk) disemprotkan ke dalam ruangan yang telah ”mampat” dan bersuhu tinggi, sehingga dapat langsung membuat ”kabut solar” tadi meledak dan mendorong ”piston” yang kemudian akan menggerakkan poros-poros roda, singkatnya menjadi TENAGA. Kejadian ini berulang-ulang dan tenaga yang muncul pun dapat dimanfaatkan untuk menggerakkan mobil, generator listrik, dan sebagainya.

Nah secara sederhana begitulah cara kerja mesin Diesel. Pembuat mesin diesel yang lebih maju tentu menambah di sana sini untuk memberi peningkatan kinerja dan tenaga. Walau cara kerjanya menjadi lebih rumit, tapi dasarnya tetap tidak berubah.

Ayo, ada yang tertarik menjadi ahli mesin? Rajin belajar dan coba sesekali ikut mengamati ayah kamu atau montir ”mengoprek” mesin mobilnya.


C. Ketika udara dikompresi suhunya akan meningkat (seperti dinyatakan oleh Hukum Charles), mesin diesel menggunakan sifat ini untuk proses pembakaran. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresi dari mesin bensin. Beberapa saat sebelum piston pada posisi Titik Mati Atas (TMA) atau BTDC (Before Top Dead Center), bahan bakar diesel disuntikkan ke ruang bakar dalam tekanan tinggi melalui nozzle supaya bercampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection).


Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar. Tenaga putar pada ujung poros crankshaft dimanfaatkan untuk berbagai keperluan.
Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan komponen :
Turbocharger atau supercharger untuk memperbanyak volume udara yang masuk ruang bakar karena udara yang masuk ruang bakar didorong oleh turbin pada turbo/supercharger.
Intercooler untuk mendinginkan udara yang akan masuk ruang bakar. Udara yang panas volumenya akan mengembang begitu juga sebaliknya, maka dengan didinginkan bertujuan supaya udara yang menempati ruang bakar bisa lebih banyak.
Mesin diesel sulit untuk hidup pada saat mesin dalam kondisi dingin. Beberapa mesin menggunakan pemanas elektronik kecil yang disebut busi menyala (spark/glow plug) di dalam silinder untuk memanaskan ruang bakar sebelum penyalaan mesin. Lainnya menggunakan pemanas "resistive grid" dalam "intake manifold" untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin.
Dalam cuaca yang sangat dingin, bahan bakar diesel mengental dan meningkatkan viscositas dan membentuk kristal lilin atau gel. Ini dapat mempengaruhi sistem bahan bakar dari tanki sampai nozzle, membuat penyalaan mesin dalam cuaca dingin menjadi sulit. Cara umum yang dipakai adalah untuk memanaskan penyaring bahan bakar dan jalur bahan bakar secara elektronik.
Untuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu para putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat berkerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka bisa mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih mencapai tujuan ini melalui elektronik kontrol modul (ECM) atau elektronik kontrol unit (ECU) - yang merupakan "komputer" dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidrolik untuk mengatur kecepatan mesin.

Mekanika

Teknik mesin atau Teknik mekanik adalah ilmu teknik mengenai aplikasi dari prinsip fisika untuk analisa, desain, manufaktur dan pemeliharaan sebuah sistem mekanik. Ilmu ini membutuhkan pengertian mendalam atas konsep utama dari cabang ilmu mekanika, kinematika, teknik material, termodinamika dan energi. Ahli atau pakar dari teknik mesin biasanya disebut sebagai insinyur (teknik mesin), yang memanfaatkan pengertian atas ilmu teknik ini dalam mendesain dan menganalisa pembuatan kendaraan, pesawat, pabrik industri, peralatan dan mesin industri dan lain sebagainya. Teknik mesin biasanya terdiri dari :
  1. Perancangan Mekanik dan Konstruksi
  2. Proses Manufaktur dan Sistem Produksi
  3. Konversi energi
  4. Ilmu Bahan / Metalurgi
Teknik mesin mulai berkembang sebagai suatu ilmu setelah adanya revolusi industri di Eropa pada abad ke-18. Kemudian di abad ke-19 semakin berkembang lagi mengikuti perkembangan ilmu fisika. Ilmu teknik mesin pun semakin canggih, dan para insinyurnya sekarang mengembangkan diri di bagian komposit, mekatronika, dan nanoteknologi. Ilmu ini juga mempunyai hubungan dengan teknik penerbangan, teknik sipil, teknik listrik, teknik perminyakan, dan teknik kimia.

Mekanika adalah bidang ilmu yang mempelajari gaya dan efeknya pada suatu benda. Secara khusus, mekanika digunakan untuk menganalisa dan memprediksi akselerasi dan deformasi (keduanya elastis dan plastis) dari suatu benda. Subdisiplin dari ilmu mekanika diantaranya:
  • Statis, ilmu yang mempelajari benda diam, bagaimana suatu gaya mempengaruhi benda diam.
  • Dinamis (atau kinetis), ilmu yang mempelajari pengaruh gaya terhadap benda bergerak.
  • Mekanika material, ilmu yang mempelajari bagaimana material yang berbeda berubah bentuk terhadap berbagai macam tipe tekanan/tegangan.
  • Mekanika fluida, ilmu yang mempelajari bagaimana fluida bereaksi terhadap gaya[2]
  • Mekanika continuum, sebuah metode aplikasi mekanika yang mengasumsikan kalau suatu objek adalah berkesinambungan/terus menerus.
Para insinyur teknik mesin menggunakan ilmu mekanika pada tahap mendesain atau menganalisis. Misalnya, jika proyeknya adalah desain dari sebuah kendaraan, maka ilmu statis dapat dipakai untuk mendesain bodi kendaraan, untuk mengukur seberapa maksimum tegangan yang dapat diberikan. Ilmu dinamis dapat digunakan untuk mendesain mesin mobil, melihat gaya yang bekerja pada piston dan cam sebagai siklus sebuah mesin. Mekanika material dapat digunakan untuk memilih bahan apa yang cocok untuk bodi mobil sekaligus mesinnya. Mekanika fluida dapat digunakan untuk mendesain sistem ventilasi kendaraan (lihat HVAC), atau juga bisa untuk mendesain sistem masukan (intake) pada mesin.
Analisis struktural merupakan cabang dari ilmu teknik mesin (dan juga teknik sipil) yang digunakan untuk melihat mengapa dan bagaimana suatu objek mengalami kegagalan. Kegagalan struktural dapat dilihat dengan 2 tipe utama: kegagalan statis (static failure) dan kegagalan kelelahan (fatigue failure). Kegagalan struktural statis muncul ketika suatu benda mendapatkan gaya yang terlalu besar, lalu mengalami deformasi plastis. Kegagalan kelelahan muncul ketika suatu benda mengalami kegagalan (kerusakan) setelah menerima suatu gaya terus-menerus secara berulang-ulang. Suatu objek yang mengalami kegagalan kelelahan biasanya dimulai dengan adanya pecahan mikroskopis pada permukaan objek itu. Seiring berjalannya waktu, pecahan itu akan semakin besar, sampai pada suatu saat "pecahan" itu telah cukup besar untuk menyebabkan suatu kerusakan pada objek tersebut.
Kegagalan pada teknik tidak serta merta didefiniskan ketika suatu benda rusak saja, tapi juga termasuk ketika mereka tidak dapat beroperasi sebagaimana mestinya.
Analisis struktural digunakan oleh para insinyur teknik mesin setelah munculnya suatu "kegagalan", atau digunakan untuk mendesain benda agar terhindari dari "kegagalan" itu.

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More